18 research outputs found

    Antarctic microbial mats: a modern analogue for Archean lacustrine oxygen oases.

    Get PDF
    The evolution of oxygenic photosynthesis was the most important geochemical event in Earth history, causing the Great Oxidation Event (GOE) ~2.4 b.y. ago. However, evidence is mixed as to whether O2 production occurred locally as much as 2.8 b.y. ago, creating O2 oases, or initiated just prior to the GOE. The biogeochemical dynamics of possible O2 oases have been poorly constrained due to the absence of modern analogs. However, cyanobacteria in microbial mats in a perennially anoxic region of Lake Fryxell, Antarctica, create a 1–2 mm O2-containing layer in the upper mat during summer, providing the first known modern analog for formation of benthic O2 oases. In Lake Fryxell, benthic cyanobacteria are present below the oxycline in the lake. Mat photosynthesis rates were slow due to low photon flux rate (1–2 μmol m-2 s-1) under thick ice cover, but photosynthetic O2 production was sufficient to sustain up to 50 μmol O2 L-1, sandwiched between anoxic overlying water and anoxic sediments. We hypothesize that Archean cyanobacteria could have similarly created O2 oases in benthic mats prior to the GOE. Analogous mats may have been at least partly responsible for geological evidence of oxidative weathering prior to the GOE, and habitats such as Lake Fryxell provide natural laboratories where the impact of benthic O2 oases on biogeochemical signatures can be investigated

    Stromatolite records of environmental change in perennially ice-covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    Get PDF
    Calcite-rich columnar stromatolites grew in perennially ice-covered Lake Joyce in the McMurdo Dry Valleys, Antarctica, during a period of environmental change associated with rising lake level. Stromatolite calcite contains carbon and oxygen isotope records of changes to microbial activity in response to variable light environments and water chemistry through time. The stromatolites grew synchronously with correlative calcite zones. The innermost (oldest) calcite zone has a wide range of δ¹³Ccalcite values consistent with variable photosynthetic effects on local DIC ¹³C/¹²C. Subsequent calcite zones preserve a progressive enrichment in δ¹³Ccalcite values of approximately + 2.6‰ through time, with δ¹³Ccalcite values becoming less variable. This enrichment likely records the removal of ¹²C by photosynthesis from the DIC reservoir over decades, with photosynthetic effects decreasing as light levels became lower and more consistent through time. Mean δ¹⁸Ocalcite values of the innermost calcified zone were at least 1‰ lower than those of the other calcified zones (t test p-level < 0.001). The significant difference in δ¹⁸Ocalcite values between the innermost and other calcified zones could be a product of mixing source waters with different isotopic values associated with the initiation of lake stratification associated with rising lake level. Overall, Lake Joyce stromatolites record significant lateral variability in relative photosynthetic rate and long-lived lake water stratification with microbial modification of the DIC pool. Such processes provide criteria for interpreting microbial activity within polar paleolake deposits and may shed light on variability in lake environments associated with changing climate in the McMurdo Dry Valleys

    Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater

    Get PDF
    Mars Science Laboratory (MSL) Curiosity rover data are used to describe the morphology of desiccation cracks observed in ancient lacustrine strata at Gale crater, Mars, and to interpret their paleoenvironmental setting. The desiccation cracks indicate subaerial exposure of lacustrine facies in the Sutton Island member of the Murray formation. In association with ripple cross-stratification and possible eolian cross-bedding, these facies indicate a transition from longer-lived perennial lakes recorded by older strata to younger lakes characterized by intermittent exposure. The transition from perennial to episodically exposed lacustrine environments provides evidence for local to regional climate change that can help constrain Mars climate models

    Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica.

    No full text
    Perennially ice-covered, meromictic lakes in the McMurdo Dry Valleys, Antarctica, are useful models to study the relationship between cyanobacterial and environmental variables.They have rich benthic cyanobacterial mat accumulations and stable stratification of physical and chemical conditions. Here, we evaluated cyanobacteria from benthic mats from multiple depths in three geographically separated ice-covered lakes, Lakes Vanda, Hoare and Joyce, using 16S rRNA gene clone libraries. We identified 19 ribotypes, mostly Oscillatoriales and several Chroococcales, as well as potentially novel cyanobacterial ribotypes. The majority of ribotype diversity was shared between lakes, and only a weak relationship between ribotype community structure and environmental variables was evident. Multivariate analysis of all lake&ndash;depth combinations implied that photosynthetically active radiation, dissolved reactive phosphorus and conductivity were potentially important for shaping benthic communities in McMurdo Dry Valley lakes. Cyanobacterial-specific pigment signature analysis by high-performance liquid chromatography showed that the cyanobacterial communities responded to light conditions similarly, irrespective of community composition. The results imply a capability within a suite of cyanobacteria to colonise, adapt and grow across broad environmental ranges and geographic space, and such adaptability may provide a high degree of community resistance and resilience to future climate-driven environmental change in Antarctic terrestrial aquatic ecosystems
    corecore